Atomic scale characterization of deformation induced interfacial mixing in a Cu/V nanocomposite wire
نویسندگان
چکیده
The microstructure of a Cu/V nanocomposite wire processed by cold drawing was investigated by high resolution transmission electron microscopy and atom probe tomography. The experimental data clearly reveal some deformation induced interfacial mixing where the vanadium filaments are nanoscaled. The mixed layer is a 2nm wide vanadium gradient in the fcc Cu phase. This mechanical mixing leads to the local fragmentation and dissolution of the filaments and to the formation of vanadium super saturated solid solutions in fcc Cu. Published by Elsevier Ltd (www.elsevier.com/locate/scriptamat) doi:10.1016/j.scriptamat.2009.06.007 Scripta Materialia 61 (2009) 660–663 1 ha l-0 04 02 82 8, v er si on 1 8 Ju l 2 00 9 Author manuscript, published in "Scripta Materialia 61 (2009) 660-663" DOI : 10.1016/j.scriptamat.2009.06.007
منابع مشابه
Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates.
Deformation of ductile crystalline-amorphous nanolaminates is not well understood due to the complex interplay of interface mechanics, shear banding, and deformation-driven chemical mixing. Here we present indentation experiments on 10 nm nanocrystalline Cu-100 nm amorphous CuZr model multilayers to study these mechanisms down to the atomic scale. By using correlative atom probe tomography and ...
متن کاملAtomistic simulation of the vapor deposition of Ni/Cu/Ni multilayers: Incident adatom angle effects
Molecular dynamics simulations have been used to explore the effects of incident adatom angle upon the atomic scale structure of Ni/Cu/Ni multilayers grown by vapor deposition under controlled incident atom energy conditions. For incident atom energies of 1 eV or less, increasing the incident angle increased interfacial roughness, resulted in void formation in the nickel layer, and intermixing ...
متن کاملEffects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations
Thermal transport across interfaces is becoming increasingly important with the advent of nanostructures and nanocomposite materials. A nonequilibrium molecular dynamics (NEMD) approach is developed to investigate thermal transport across solid–solid interfaces. Thermal boundary conductance is calculated for a range of mismatched interfaces and compared to the diffuse mismatch model (DMM). The ...
متن کاملEffect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies
Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...
متن کاملSimulations of dynamical stabilization of Ag–Cu nanocomposites by ion-beam processing
Recent theoretical results indicate that ion-beam mixing can be used to synthesize nanocomposite structures from immiscible elements, relying on a self-organization phenomenon at steady state under irradiation. According to this modeling, self organization requires that the range of the forced atomic relocations in displacement cascades exceeds a critical value. Experimental evidence supporting...
متن کامل